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ABSTRACT 
 

Electrochemical plating is used to give a particular property to a component. This can be a 
decorative aspect (silver, gilding), a physical or mechanical property different from an existing 
one (hard chromium), or, a protection against corrosion (nickel and chromium). On the other 
hand, the design of an electrochemical cell needs many experimental tests in order to lead to an 
optimal geometry of the electrodes, an appropriate electrolyte, and to produce a uniform deposit. 
The industrial cells with respect of a complex geometry can be modelled, a large gain is reached 
in coat. The software in three-dimensional space, simulates deposit distribution. Many industrial 
cells have been modelled and numerical results are in good agreement with deposit 
measurements. 

The numerical method is based on Boundary Element Method, by coupling with a 
Newton-Raphson iterative technique of resolution to treat the non linearity of experimental 
boundary conditions. 

In electroplating numerical process, boundary conditions on the cathodic and anodic 
electrodes are experimental polarization laws. The objective of this present work is to identify 
these laws, we adjust the model to be in good agreement with the experimental measurements. 
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1. MATHEMATICAL MODELLING 
 

The electrolytic domain Ω (electric conductivity σ) is limited by the bounds ΓA∪ΓC∪ΓR 
(Figure 1), the anodic boundary ΓA, the cathodic boundary ΓC and the insulating part ΓR, 
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Figure 1 - General representation of an electrochemical system. 
 

The direct problem of electrochemical plating [1] is described by: 



 
find potential u x( )  in electrolytic domain and potential difference  between the two 

electrodes such as: 
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The total current I debited by the generator corresponds to the dual quantity ϕ between the 

two electrodes [2]. 
The functions f and g represents respectively cathodic and anodic polarization laws, they 

describes the potential gap at the electrode/solution interface. The preliminary step is the 
experimental measurement of this gap, after we will research numerically these functions under 
polynomial form, 
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so we must determine the vector θT=(α,β) of polynomial behaviour laws parameters f and g. 
 
2. INTEGRAL FORMULATION 
 

The Boundary Element Method [3] [4] coupled with a Newton-Raphson iteration 
technique (to treat the non linearity of boundary conditions) is well adapted to the calculations of 
current distribution and deposit distribution. The Boundary Element Method is the most natural 
technique since only data on the boundaries are needed and used [5] [6] [7]. 
 

The integral formulation is described by, 
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with K(x,y) and ∂K(x,y)/∂ny respectively potentials of simple and double layer, and the free term 
(x) verify (8). 
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ysical variables of the domain surface, they are linked by 

oundary conditions of the problem. 

. IDENTIFICATION BY OPTIMAL CONTROL THEORY 
 

ries and discretisation 
f (5), the non linear state equations under integral form are described by, 
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 to minimize the equation (10) at the point of the 
easurement (interior point of the electrolyte), 
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with νT=(u,ϕ), these equations must be satisfied
m
 

u x v( )Imes = O  (10) 

ith O operator of observation at the measurement node. 

 
Figure 2 – experimental cell 
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The experiment (Figure 2) give a number of potential measurements Zη at the geometric 
node of the measurement for different currents Iη. The problem consist on adjusting θ to 
minimize |Oνη-Zη| for the experimental measurements η=1,…,M. The indicator B(θ) measures 
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the gap between numerical potentials (10) and measured potentials Zη for each experimental 
easurement η, m
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 (11) by the method of adjoint state, solution of dual 
quation defined by multiplier Lagrange. 

. CONVERGENCE OF METHOD OF THE ADJOINT STATE 
 

aluate the algorithm performance of the numerical identification, an experimental test 
was built. 

 

 

The vector θ of parameters for polynomial laws f and g is determined by specific minimum 
search algorithm based on a 2nd order descent method. At each step, the direction of research is 
issued from the calculation of gradient of
e
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Figure 3 – Algorithm convergence 
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So Zη are the measurements and we start the algorithm using an initial polarization curve. 
Figure 3 shows the convergence of the numerical polarization curve to the measurements. 
Another tests have been made and improve the performance of the method of adjoint state. When 
the measurements are reached, we can observe potentials and current densities on the electrode. 
These quantities constitute the real polarization curve because polarization law must be a 
oundary condition, and not an approximation such the measurement of a gap. 

ONCLUSIONS 
 

lready proved his performance, numerical results 
are in

 after 
onvergence we access to the real polarization curve on electrode with the numerical tool. 
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The Boundary Element Method in combination with a Newton-Raphson iteration to 
determine current distribution is a predictive tool in applications of electrodeposition. The 
software used to simulate electroplating have a

 good agreement with experimental data. 
This paper shows boundary condition on electrodes can be improved. Experimental 

measurements of polarization curve describe the gap between electrode and point of the measure. 
The method of adjoint state allows us to adjust the model to the measurements, and
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